
FINAL ASSIGNMENT

AUTOMATING GIS
PROCESSES

FINAL ASSIGNMENT

60 % of course grade

Two deadlines to choose from:

• 1st deadline: Thursday the 31st December 2020

• 2nd deadline Friday the 15th of January 2021

(if submitting earlier, send a Slack msg to Vuokko)

The main goal is to practice and demonstrate skills
learned during Geo-Python and AutoGIS

COURSE TOPICS

1 Shapely and geometric objects (points, lines and polygons)

2
Managing spatial data with Geopandas (reading and writing

data, projections, table joins)

3 Geocoding and spatial queries

4 Reclassifying data, overlay analysis

5 Visualization: static and interactive maps

6 OpenStreetMap data (osmnx) and Network analysis (networkx)

7 Course recap and preparing for the final assignment

Extra Raster processing (rasterio), Python in QGIS

REMINDER: AUTOGIS
LEARNING GOALS 1/2

• After completing this course, the students are able to

• test and produce modular code in the Python programming
language

• manage spatial data programmatically (for example, reading
different data formats, re-projecting, re-classifying and storing
data),

• apply spatial analysis methods in Python (such as buffering,
network analysis and spatial joins)

• create visualizations (graphs and maps) from geographic data
using Python

• design and implement a geographical data analysis workflow

REMINDER: AUTOGIS
LEARNING GOALS 2/2

• After completing this course, the students are able to

• Independently search for information regarding programming
methods

• Apply new methods based on online documentation

• Critically evaluate the available methods and information sources

• Understand the importance of version control for practical tasks
and scientific purposes

• Communicate their analysis workflow in written format

• Complete assignments on time

FINAL ASSIGNMENT

The task in the final assignment is to develop a GIS analysis
workflow using Python that includes:

• Data acquisition (Reading data from files or online sources)

• Data analysis (Enriching and analyzing the data, eg. spatial join,
overlay, buffering, other calculations..)

• Visualization (Visualizing the results as maps and graphs)

 ideally, the same code could be applied on multiple inputs with
minimum amount of manual edits.

STRUCTURE

• The final work will be a set of Jupyter Notebook files (.ipynb)
and/or Python script files (.py)

• The README (.md) should contain all relevant information
about the work, including links to all files

• IF you are using large input files, DON’T upload them to
GitHub! You can provide sample data for demonstrating your
workflow, and/or download instructions for the whole data set.

• Remember to use informative variable names, inline
comments, docstrings etc.

 anyone who gets a copy of your repository should be able to
run your code AND read your code.

FINAL ASSIGNMENT
ASSESMENT

60 points points for main components of the workflow (20 per each):

- reading and manipulating data

- analyzing data

- visualizing data

10 points for overall documentation of the work

Extra points available for other merits in the work

 Grade 1-5

CHECKLIST..

• Is the overall aim and structure of the submission is clearly
documented in the README.md file

• Is the documentation of the analysis process and related functions
clear (docstrings, comments, markdown texts readme)?

• Are there visualizations? At least a single map should be in place,
after all, this is a GIS course!

• Does the code work? Does the code work with different inputs?

• Does the code avoid unnecessary repetition (e.g. by using functions
and for-loops)?

• Is the extent of the work sufficient? (consider that the final work
replaces an exam!)

YOU CAN REMOVE THESE INSTRUCTIONS FROM THE

FINAL SUBMISSION

WORKFLOW

Process 1INPUT

Process 2

Process 3

Output 1

Output 2

WORKFLOW

Table join

Travel_times_

to_xxxx.txt

Compare travel

modes

Visualize

Maps

New

columns

Travel_times_

to_xxxx.shp

Grid.shp

Travel_times_

to_xxxx.txtTravel_times_

to_xxxx.txt

ACCESS VIZ

AccessViz is a Python tool (i.e. a set of Notebooks and/or Python script

files) for managing, analyzing and visualizing the Travel Time Matrix data

set. AccessViz consist of Python functions, and examples on how to use

these functions.

AccessViz has four main components for accessing the files,

joining the attribute information to spatial data, visualizing the data and

comparing different travel modes:

1. FileFinder

2. TableJoiner

3. Visualizer

4. Comparison tool

+ four other optional components

URBAN INDICATORS

Develop an urban analytics tool and apply it to at least two cities or

neighborhoods(e.g. Helsinki and Tampere, or neighborhood areas in

Helsinki).

The main idea is to calculate a set of metrics / indicators based on the

urban form and/or population, and to compare the cities/regions based on

these measures.

You should use 2-4 different indicators, for example some of these:

Population distribution and demographics

Urban population growth

Accessibility:

Green area index

Street network metrics

Building density

YOUR OWN TOPIC?

Develop your own topic! In general, your own topic should also contain these sections:

1. **Data acquisition** (Fetching data, subsetting data, storing intermediate outputs etc.)

2. **Data analysis** (Enriching and analyzing the data, eg. spatial join, overlay, buffering..)

3. **Visualization** (maps and graphs)

But feel free to be creative! Your own project might be, for example, related to your thesis or

work project. Remember to describe clearly what you are doing in the final assignment

repository README.md -file.

Preferably, present your idea to the course instructors before the winter holidays.

FINALLY..

There are several guidelines how to do programming "in a proper way". These best practices when

doing programming are well described in Wilson et al. (2014)

http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1001745

1. *"Write programs for people, not computers."*

2. *"Let the computer do the work."*

3. *"Make incremental changes."*

4. *"Don't repeat yourself (or others)."*

5. *"Plan for mistakes."*

6. *"Optimize software only after it works correctly."*

7. *"Document design and purpose, not mechanics."*

8. *"Collaborate."*

The cool stuff we didn’t (yet) cover during the lessons..

ADDITIONAL
RESOURCES

RASTER DATA PROCESSING

https://automating-gis-processes.github.io/site/lessons/Raster/overview.html

https://automating-gis-processes.github.io/site/lessons/Raster/overview.html

ONLINE RESOURCES..

• MovingPandas for analysing trajectories:

‒ https://github.com/anitagraser/movingpandas

‒ https://anitagraser.com/2019/09/11/movement-data-in-gis-24-movingpandas-
hands-on-tutorials/

• Plotly express for interactive maps:

‒ https://plot.ly/python/plotly-express/

‒ https://plot.ly/python/maps/

• Raster data visualization using datashader

‒ https://datashader.org/user_guide/Geography.html

…. And many more!

https://github.com/anitagraser/movingpandas
https://anitagraser.com/2019/09/11/movement-data-in-gis-24-movingpandas-hands-on-tutorials/
https://plot.ly/python/plotly-express/
https://plot.ly/python/maps/
https://datashader.org/user_guide/Geography.html

LET’S GET STARTED !

https://autogis.github.io

https://autogis.github.io/

