Spatial join

Spatial join is yet another classic GIS problem. Getting attributes from one layer and transferring them into another layer based on their spatial relationship is something you most likely need to do on a regular basis.

In the previous section we learned how to perform a Point in Polygon query. We could now apply those techniques and create our own function to perform a spatial join between two layers based on their spatial relationship. We could, for example, join the attributes of a polygon layer into a point layer where each point would get the attributes of a polygon that contains the point.

Luckily, spatial join is already implemented in Geopandas , thus we do not need to create it ourselves. There are three possible types of join that can be applied in spatial join that are determined with op -parameter in the gpd.sjoin() -function:

  • "intersects"

  • "within"

  • "contains"

Sounds familiar? Yep, all of those spatial relationships were discussed in the Point in Polygon lesson, thus you should know how they work.

Let’s perform a spatial join between these two layers:

  • Addresses: the address-point Shapefile that we created trough geocoding

  • Population grid: a Polygon layer that is a 250m x 250m grid showing the amount of people living in the Helsinki Region.

Download and clean the data

Execute the following steps in a terminal window

  • Navigate to the data folder

    $ cd data
  • Download the population grid using wget:

    $ wget "https://www.hsy.fi/sites/AvoinData/AvoinData/SYT/Tietoyhteistyoyksikko/Shape%20(Esri)/V%C3%A4est%C3%B6tietoruudukko/Vaestotietoruudukko_2017_SHP.zip"

  • Unzip the file in Terminal into a folder called Pop17 (using -d flag)

    $ unzip Vaestotietoruudukko_2017_SHP.zip -d Pop17

You should now have a folder /data/Pop17 containing the population grid shapefile.

  • Let’s read the data into memory and see what we have.

import geopandas as gpd

# Filepath
fp = "data/Pop17/Vaestoruudukko_2017.shp"

# Read the data
pop = gpd.read_file(fp)

# See the first rows
pop.head()
INDEX ASUKKAITA ASVALJYYS IKA0_9 IKA10_19 IKA20_29 IKA30_39 IKA40_49 IKA50_59 IKA60_69 IKA70_79 IKA_YLI80 geometry
0 688 9 28.0 99 99 99 99 99 99 99 99 99 POLYGON Z ((25472499.99532626 6689749.00506918...
1 710 8 44.0 99 99 99 99 99 99 99 99 99 POLYGON Z ((25472499.99532626 6684249.00413040...
2 711 5 90.0 99 99 99 99 99 99 99 99 99 POLYGON Z ((25472499.99532626 6683999.00499700...
3 715 12 37.0 99 99 99 99 99 99 99 99 99 POLYGON Z ((25472499.99532626 6682998.99846143...
4 848 6 44.0 99 99 99 99 99 99 99 99 99 POLYGON Z ((25472749.99291839 6690249.00333598...

Okey so we have multiple columns in the dataset but the most important one here is the column ASUKKAITA (“population” in Finnish) that tells the amount of inhabitants living under that polygon.

  • Let’s change the name of that columns into pop17 so that it is more intuitive. Changing column names is easy in Pandas / Geopandas using a function called rename() where we pass a dictionary to a parameter columns={'oldname': 'newname'}.

# Change the name of a column
pop = pop.rename(columns={'ASUKKAITA': 'pop17'})

# See the column names and confirm that we now have a column called 'pop17'
pop.columns
Index(['INDEX', 'pop17', 'ASVALJYYS', 'IKA0_9', 'IKA10_19', 'IKA20_29',
       'IKA30_39', 'IKA40_49', 'IKA50_59', 'IKA60_69', 'IKA70_79', 'IKA_YLI80',
       'geometry'],
      dtype='object')
  • Let’s also get rid of all unnecessary columns by selecting only columns that we need i.e. pop17 and geometry

# Columns that will be sected
selected_cols = ['pop17', 'geometry']

# Select those columns
pop = pop[selected_cols]

# Let's see the last 2 rows
pop.head()
pop17 geometry
0 9 POLYGON Z ((25472499.99532626 6689749.00506918...
1 8 POLYGON Z ((25472499.99532626 6684249.00413040...
2 5 POLYGON Z ((25472499.99532626 6683999.00499700...
3 12 POLYGON Z ((25472499.99532626 6682998.99846143...
4 6 POLYGON Z ((25472749.99291839 6690249.00333598...

Now we have cleaned the data and have only those columns that we need for our analysis.

Join the layers

Now we are ready to perform the spatial join between the two layers that we have. The aim here is to get information about how many people live in a polygon that contains an individual address-point . Thus, we want to join attributes from the population layer we just modified into the addresses point layer addresses.shp that we created trough gecoding in the previous section.

  • Read the addresses layer into memory

# Addresses filpath
addr_fp = r"data/addresses.shp"

# Read data
addresses = gpd.read_file(addr_fp)

# Check the head of the file
addresses.head()
address id addr geometry
0 Ruoholahti, 14, Itämerenkatu, Ruoholahti, Läns... 1000 Itämerenkatu 14, 00101 Helsinki, Finland POINT (24.9155624 60.1632015)
1 Kamppi, 1, Kampinkuja, Kamppi, Eteläinen suurp... 1001 Kampinkuja 1, 00100 Helsinki, Finland POINT (24.9316914 60.1690222)
2 Bangkok9, 8, Kaivokatu, Keskusta, Kluuvi, Etel... 1002 Kaivokatu 8, 00101 Helsinki, Finland POINT (24.9416849 60.1699637)
3 1, Hermannin rantatie, Hermanninmäki, Hermanni... 1003 Hermannin rantatie 1, 00580 Helsinki, Finland POINT (24.9655355 60.2008878)
4 Hesburger, 9, Tyynenmerenkatu, Jätkäsaari, Län... 1005 Tyynenmerenkatu 9, 00220 Helsinki, Finland POINT (24.9216003 60.1566475)

In order to do a spatial join, the layers need to be in the same projection

# Are the layers in the same projection?
addresses.crs == pop.crs
False

Let’s re-project addresses to the projection of the population layer:

addresses = addresses.to_crs(pop.crs)
  • Let’s make sure that the coordinate reference system of the layers are identical

# Check the crs of address points
print(addresses.crs)

# Check the crs of population layer
print(pop.crs)

# Do they match now?
addresses.crs == pop.crs
{'proj': 'tmerc', 'lat_0': 0, 'lon_0': 25, 'k': 1, 'x_0': 25500000, 'y_0': 0, 'ellps': 'GRS80', 'units': 'm', 'no_defs': True}
{'proj': 'tmerc', 'lat_0': 0, 'lon_0': 25, 'k': 1, 'x_0': 25500000, 'y_0': 0, 'ellps': 'GRS80', 'units': 'm', 'no_defs': True}
True

Now they should be identical. Thus, we can be sure that when doing spatial queries between layers the locations match and we get the right results e.g. from the spatial join that we are conducting here.

  • Let’s now join the attributes from pop GeoDataFrame into addresses GeoDataFrame by using gpd.sjoin() -function

# Make a spatial join
join = gpd.sjoin(addresses, pop, how="inner", op="within")

# Let's check the result
join.head()
address id addr geometry index_right pop17
0 Ruoholahti, 14, Itämerenkatu, Ruoholahti, Läns... 1000 Itämerenkatu 14, 00101 Helsinki, Finland POINT (25495311.60802662 6672258.694634228) 3238 501
1 Kamppi, 1, Kampinkuja, Kamppi, Eteläinen suurp... 1001 Kampinkuja 1, 00100 Helsinki, Finland POINT (25496207.84010911 6672906.172794735) 3350 190
2 Bangkok9, 8, Kaivokatu, Keskusta, Kluuvi, Etel... 1002 Kaivokatu 8, 00101 Helsinki, Finland POINT (25496762.72293893 6673010.538330208) 3474 37
10 Rautatientori, Keskusta, Kluuvi, Eteläinen suu... 1011 Rautatientori 1, 00100 Helsinki, Finland POINT (25496896.60078502 6673159.446016792) 3474 37
3 1, Hermannin rantatie, Hermanninmäki, Hermanni... 1003 Hermannin rantatie 1, 00580 Helsinki, Finland POINT (25498088.55200266 6676455.030033929) 3711 133

Awesome! Now we have performed a successful spatial join where we got two new columns into our join GeoDataFrame, i.e. index_right that tells the index of the matching polygon in the population grid and pop17 which is the population in the cell where the address-point is located.

  • Let’s save this layer into a new Shapefile

# Output path
outfp = r"data/addresses_pop17_epsg3979.shp"

# Save to disk
join.to_file(outfp)

Do the results make sense? Let’s evaluate this a bit by plotting the points where color intensity indicates the population numbers.

  • Plot the points and use the pop17 column to indicate the color. cmap -parameter tells to use a sequential colormap for the values, markersize adjusts the size of a point, scheme parameter can be used to adjust the classification method based on pysal, and legend tells that we want to have a legend.

import matplotlib.pyplot as plt

# Plot the points with population info
join.plot(column='pop17', cmap="Reds", markersize=7, scheme='quantiles', legend=True);

# Add title
plt.title("Amount of inhabitants living close the the point");

# Remove white space around the figure
plt.tight_layout()
/opt/conda/lib/python3.6/site-packages/scipy/stats/stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.
  return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval
../../_images/spatial-join_20_1.png

By knowing approximately how population is distributed in Helsinki, it seems that the results do make sense as the points with highest population are located in the south where the city center of Helsinki is.